
14
Matrices

In this chapter, we discuss basic definitions and results concerning matrices. We
shall start out with a very general point of view, discussing matrices whose entries
lie in an arbitrary ring R. Then we shall specialize to the case where the entries lie
in a field F , where much more can be said.

One of the main goals of this chapter is to discuss “Gaussian elimination,” which
is an algorithm that allows us to efficiently compute bases for the image and kernel
of an F -linear map.

In discussing the complexity of algorithms for matrices over a ring R, we shall
treat a ringR as an “abstract data type,” so that the running times of algorithms will
be stated in terms of the number of arithmetic operations in R. If R is a finite ring,
such as Zm, we can immediately translate this into a running time on a RAM (in
later chapters, we will discuss other finite rings and efficient algorithms for doing
arithmetic in them).

If R is, say, the field of rational numbers, a complete running time analysis
would require an additional analysis of the sizes of the numbers that appear in the
execution of the algorithm. We shall not attempt such an analysis here—however,
we note that all the algorithms discussed in this chapter do in fact run in poly-
nomial time when R = Q, assuming we represent rational numbers as fractions in
lowest terms. Another possible approach for dealing with rational numbers is to use
floating point approximations. While this approach eliminates the size problem, it
creates many new problems because of round-off errors. We shall not address any
of these issues here.

14.1 Basic definitions and properties
Throughout this section, R denotes a ring.

For positive integers m and n, an m × n matrix A over a ring R is a rectangular
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array

A =











a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn











,

where each entry aij in the array is an element of R; the element aij is called the
(i, j) entry of A, which we denote by A(i, j). For i = 1, . . . ,m, the ith row of A is

(ai1, . . . , ain),

which we denote by Rowi(A), and for j = 1, . . . , n, the jth column of A is










a1j

a2j
...
amj











,

which we denote by Colj(A). We regard a row of A as a 1×nmatrix, and a column
of A as an m × 1 matrix.

The set of all m × n matrices over R is denoted by Rm×n. Elements of R1×n

are called row vectors (of dimension n) and elements of Rm×1 are called col-
umn vectors (of dimension m). Elements of Rn×n are called square matrices (of
dimension n). We do not make a distinction between R1×n and R×n; that is, we
view standard n-tuples as row vectors.

We can define the familiar operations of matrix addition and scalar multipli-
cation:

• If A,B ∈ Rm×n, then A + B is the m × n matrix whose (i, j) entry is
A(i, j) + B(i, j).

• If c ∈ R and A ∈ Rm×n, then cA is the m × n matrix whose (i, j) entry is
cA(i, j).

The m × n zero matrix is the m × n matrix, all of whose entries are 0R; we denote
this matrix by 0m×nR (or just 0, when the context is clear).

Theorem 14.1. With addition and scalar multiplication as defined above, Rm×n is
an R-module. The matrix 0m×nR is the additive identity, and the additive inverse of
a matrix A ∈ Rm×n is the m × n matrix whose (i, j) entry is −A(i, j).

Proof. To prove this, one first verifies that matrix addition is associative and com-
mutative, which follows from the associativity and commutativity of addition in R.
The claims made about the additive identity and additive inverses are also easily
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verified. These observations establish that Rm×n is an abelian group. One also has
to check that all of the properties in Definition 13.1 hold. We leave this to the
reader. 2

We can also define the familiar operation of matrix multiplication:

• If A ∈ Rm×n and B ∈ Rn×p, then AB is the m × p matrix whose (i, k) entry
is

n
∑

j=1

A(i, j)B(j, k).

The n × n identity matrix is the matrix I ∈ Rn×n, where I (i, i) := 1R and
I (i, j) := 0R for i 6= j. That is, I has 1R’s on the diagonal that runs from the
upper left corner to the lower right corner, and 0R’s everywhere else.

Theorem 14.2.
(i) Matrix multiplication is associative; that is, A(BC) = (AB)C for all

A ∈ Rm×n, B ∈ Rn×p, and C ∈ Rp×q.
(ii) Matrix multiplication distributes over matrix addition; that is, A(C +D) =

AC+AD and (A+B)C = AC+BC for all A,B ∈ Rm×n and C,D ∈ Rn×p.
(iii) The n × n identity matrix I ∈ Rn×n acts as a multiplicative identity; that

is, AI = A and IB = B for all A ∈ Rm×n and B ∈ Rn×m; in particular,
CI = C = IC for all C ∈ Rn×n.

(iv) Scalar multiplication and matrix multiplication associate; that is, c(AB) =
(cA)B = A(cB) for all c ∈ R, A ∈ Rm×n, and B ∈ Rn×p.

Proof. All of these are trivial, except for (i), which requires just a bit of compu-
tation to show that the (i, `) entry of both A(BC) and (AB)C is equal to (as the
reader may verify)

∑

1≤j≤n
1≤k≤p

A(i, j)B(j, k)C(k, `). 2

Note that while matrix addition is commutative, matrix multiplication in general
is not. Indeed, Theorems 14.1 and 14.2 imply that Rn×n satisfies all the properties
of a ring except for commutativity of multiplication.

Some simple but useful facts to keep in mind are the following:

• If A ∈ Rm×n and B ∈ Rn×p, then the ith row of AB is equal to vB,
where v = Rowi(A); also, the kth column of AB is equal to Aw, where
w = Colk(B).
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• If A ∈ Rm×n and v = (c1, . . . , cm) ∈ R1×m, then

vA =
m
∑

i=1

ci Rowi(A).

In words: vA is a linear combination of the rows of A, with coefficients
taken from the corresponding entries of v.

• If A ∈ Rm×n and

w =







d1
...
dn







∈ Rn×1,

then

Aw =
n
∑

j=1

dj Colj(A).

In words: Aw is a linear combination of the columns of A, with coefficients
taken from the corresponding entries of w.

If A ∈ Rm×n, the transpose of A, denoted by A , is defined to be the n × m
matrix whose (j, i) entry is A(i, j).

Theorem 14.3. If A,B ∈ Rm×n, C ∈ Rn×p, and c ∈ R, then:

(i) (A + B) = A + B ;

(ii) (cA) = cA ;

(iii) (A ) = A;

(iv) (AC) = C A .

Proof. Exercise. 2

If Ai is an ni × ni+1 matrix, for i = 1, . . . , k, then by associativity of matrix
multiplication, we may write the product matrix A1 · · ·Ak, which is an n1 × nk+1

matrix, without any ambiguity.
For an n×nmatrixA, and a positive integer k, we writeAk to denote the product

A · · ·A, where there are k terms in the product. Note that A1 = A. We may extend
this notation to k = 0, defining A0 to be the n× n identity matrix. One may readily
verify the usual rules of exponent arithmetic: for all non-negative integers k, `, we
have

(A`)k = Ak` = (Ak)` and AkA` = Ak+`.

It is easy also to see that part (iv) of Theorem 14.3 implies that for all non-negative
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integers k, we have

(Ak) = (A )k.

Algorithmic issues
For computational purposes, matrices are represented in the obvious way as arrays
of elements of R. As remarked at the beginning of this chapter, we shall treat R as
an “abstract data type,” and not worry about how elements of R are actually rep-
resented; in discussing the complexity of algorithms, we shall simply count “oper-
ations in R,” by which we mean additions, subtractions, and multiplications; we
shall sometimes also include equality testing and computing multiplicative inverses
as “operations in R.” In any real implementation, there will be other costs, such
as incrementing counters, and so on, which we may safely ignore, as long as their
number is at most proportional to the number of operations in R.

The following statements are easy to verify:

• We can multiply an m × n matrix by a scalar using mn operations in R.

• We can add two m × n matrices using mn operations in R.

• We can compute the product of an m × n matrix and an n × p matrix using
O(mnp) operations in R.

It is also easy to see that given an n×nmatrixA, and a non-negative integer e, we
can adapt the repeated squaring algorithm discussed in §3.4 so as to compute Ae

usingO(len(e)) multiplications of n×nmatrices, and henceO(len(e)n3) operations
in R.

EXERCISE 14.1. Let A ∈ Rm×n. Show that if vA = 01×n
R for all v ∈ R1×m, then

A = 0m×nR .

14.2 Matrices and linear maps
Let R be a ring.

For positive integers m and n, consider the R-modules R1×m and R1×n. If A is
an m × n matrix over R, then the map

λA : R1×m → R1×n

v 7→ vA

is easily seen to be an R-linear map—this follows immediately from parts (ii) and
(iv) of Theorem 14.2. We call λA the linear map corresponding to A.
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If v = (c1, . . . , cm) ∈ R1×m, then

λA(v) = vA =
m
∑

i=1

ci Rowi(A).

From this, it is clear that

• the image of λA is the submodule of R1×n spanned by {Rowi(A)}mi=1; in
particular, λA is surjective if and only if {Rowi(A)}mi=1 spans R1×n;

• λA is injective if and only if {Rowi(A)}mi=1 is linearly independent.

There is a close connection between matrix multiplication and composition of
corresponding linear maps. Specifically, let A ∈ Rm×n and B ∈ Rn×p, and consider
the corresponding linear maps λA : R1×m → R1×n and λB : R1×n → R1×p. Then
we have

λB ◦ λA = λAB. (14.1)

This follows immediately from the associativity of matrix multiplication.

We have seen how vector/matrix multiplication defines a linear map. Conversely,
we shall now see that the action of any R-linear map can be viewed as a vec-
tor/matrix multiplication, provided theR-modules involved have bases (which will
always be the case for finite dimensional vector spaces).

Let M be an R-module, and suppose that S = {αi}mi=1 is a basis for M , where
m > 0. As we know (see Theorem 13.14), every element α ∈ M can be written
uniquely as c1α1 + · · · + cmαm, where the ci’s are in R. Let us define

VecS (α) := (c1, . . . , cm) ∈ R1×m.

We call VecS (α) the coordinate vector of α relative to S. The function

VecS : M → R1×m

is an R-module isomorphism (it is the inverse of the isomorphism ε in Theo-
rem 13.14).

Let N be another R-module, and suppose that T = {βj}nj=1 is a basis for N ,
where n > 0. Just as in the previous paragraph, every element β ∈ N has a unique
coordinate vector VecT (β) ∈ R1×n relative to T .

Now let ρ : M → N be an arbitrary R-linear map. Our goal is to define a matrix
A ∈ Rm×n with the following property:

VecT (ρ(α)) = VecS (α)A for all α ∈M . (14.2)

In words: if we multiply the coordinate vector of α on the right by A, we get the
coordinate vector of ρ(α).
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Constructing such a matrix A is easy: we define A to be the matrix whose ith
row, for i = 1, . . . ,m, is the coordinate vector of ρ(αi) relative to T . That is,

Rowi(A) = VecT (ρ(αi)) for i = 1, . . . ,m.

Then for an arbitrary α ∈M , if (c1, . . . , cm) is the coordinate vector of α relative to
S, we have

ρ(α) = ρ
(

∑

i

ciαi

)

=
∑

i

ciρ(αi)

and so

VecT (ρ(α)) =
∑

i

ci VecT (ρ(αi)) =
∑

i

ci Rowi(A) = VecS (α)A.

Furthermore, A is the only matrix satisfying (14.2). Indeed, if A′ also satisfies
(14.2), then subtracting, we obtain

VecS (α)(A − A′) = 01×n
R

for all α ∈ M . Since the map VecS : M → R1×m is surjective, this means that
v(A−A′) is zero for all v ∈ R1×m, and from this, it is clear (see Exercise 14.1) that
A − A′ is the zero matrix, and so A = A′.

We call the unique matrix A satisfying (14.2) the matrix of ρ relative to S and
T , and denote it by MatS ,T (ρ).

Recall that HomR(M ,N) is the R-module consisting of all R-linear maps from
M to N (see Theorem 13.12). We can view MatS ,T as a function mapping ele-
ments of HomR(M ,N) to elements of Rm×n.

Theorem 14.4. The function MatS,T : HomR(M ,N) → Rm×n is an R-module
isomorphism. In particular, for every A ∈ Rm×n, the pre-image of A under MatS ,T
is Vec−1

T ◦λA ◦VecS , where λA : R1×m → R1×n is the linear map corresponding to
A.

Proof. To show that MatS ,T is an R-linear map, let ρ, ρ′ ∈ HomR(M ,N), and let
c ∈ R. Also, let A := MatS,T (ρ) and A′ := MatS,T (ρ′). Then for all α ∈ M , we
have

VecT ((ρ + ρ′)(α)) = VecT (ρ(α) + ρ′(α)) = VecT (ρ(α)) + VecT (ρ′(α))

= VecS (α)A + VecS (α)A′ = VecS (α)(A + A′).

As this holds for all α ∈ M , and since the matrix of a linear map is uniquely
determined, we must have MatS ,T (ρ + ρ′) = A + A′. A similar argument shows
that MatS ,T (cρ) = cA. This shows that MatS ,T is an R-linear map.

To show that the map MatS,T is injective, it suffices to show that its kernel is
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trivial. If ρ is in the kernel of this map, then setting A := 0m×nR in (14.2), we see
that VecT (ρ(α)) is zero for all α ∈ M . But since the map VecT : N → R1×n is
injective, this implies ρ(α) is zero for all α ∈M . Thus, ρ must be the zero map.

To show surjectivity, we show that every A ∈ Rm×n has a pre-image under
MatS,T as described in the statement of the theorem. So let A be an m × n matrix,
and let ρ := Vec−1

T ◦λA ◦VecS . Again, since the matrix of a linear map is uniquely
determined, it suffices to show that (14.2) holds for this particular A and ρ. For
every α ∈M , we have

VecT (ρ(α)) = VecT (Vec−1
T (λA(VecS (α)))) = λA(VecS (α))

= VecS (α)A.

That proves the theorem. 2

As a special case of the above, suppose that M = R1×m and N = R1×n, and S
and T are the standard bases for M and N (see Example 13.27). In this case, the
functions VecS and VecT are the identity maps, and the previous theorem implies
that the function

Λ : Rm×n → HomR(R1×m,R1×n)

A 7→ λA

is the inverse of the function MatS ,T : HomR(R1×m,R1×n) → Rm×n. Thus, the
function Λ is also an R-module isomorphism.

To summarize, we see that an R-linear map ρ from M to N , together with
particular bases for M and N , uniquely determine a matrix A such that the action
of multiplication on the right by A implements the action of ρ with respect to the
given bases. There may be many bases for M and N to choose from, and different
choices will in general lead to different matrices. Also, note that in general, a basis
may be indexed by an arbitrary finite set; however, in defining coordinate vectors
and matrices of linear maps, the index set must be ordered in some way. In any
case, from a computational perspective, the matrix A gives us an efficient way to
compute the map ρ, assuming elements of M and N are represented as coordinate
vectors with respect to the given bases.

We have taken a “row-centric” point of view. Of course, if one prefers, by simply
transposing everything, one can equally well take a “column-centric” point of view,
where the action of ρ corresponds to multiplication of a column vector on the left
by a matrix.

Example 14.1. Consider the quotient ring E = R[X ]/(f ), where f ∈ R[X ] with
deg(f ) = ` > 0 and lc(f ) ∈ R∗. Let ξ := [X ]f ∈ E. As an R-module, E
has a basis S := {ξi−1}`i=1 (see Example 13.30). Let ρ : E → E be the ξ-
multiplication map, which sends α ∈ E to ξα ∈ E. This is an R-linear map. If



14.2 Matrices and linear maps 385

f = c0 + c1X + · · ·+ c`−1X
`−1 + c`X `, then the matrix of ρ relative to S is the `× `

matrix

A =















0 1 0 · · · 0
0 0 1 · · · 0

. . .
0 0 0 · · · 1

−c0/c` −c1/c` −c2/c` · · · −c`−1/c`















,

where for i = 1, . . . , ` − 1, the ith row of A contains a 1 in position i + 1, and is
zero everywhere else. The matrix A is called the companion matrix of f . 2

Example 14.2. Let x1, . . . , xk ∈ R. LetR[X ]<k be the set of polynomials g ∈ R[X ]
with deg(g) < k, which is an R-module with a basis S := {X i−1}ki=1 (see Exam-
ple 13.29). The multi-point evaluation map

ρ : R[X ]<k → R1×k

g 7→ (g(x1), . . . , g(xk))

is an R-linear map. Let T be the standard basis for R1×k. Then the matrix of ρ
relative to S and T is the k × k matrix

A =















1 1 · · · 1
x1 x2 · · · xk
x2

1 x2
2 · · · x2

k
...

...
...

xk−1
1 xk−1

2 · · · xk−1
k















.

The matrix A is called a Vandermonde matrix. 2

EXERCISE 14.2. Let σ : M → N and τ : N → P be R-linear maps, and suppose
that M , N , and P have bases S, T , and U , respectively. Show that

MatS ,U (τ ◦ σ) = MatS ,T (σ) ·MatT ,U (τ).

EXERCISE 14.3. Let V be a vector space over a field F with basis S = {αi}mi=1.
Suppose that U is a subspace of V of dimension ` < m. Show that there exists
a matrix A ∈ Fm×(m−`) such that for all α ∈ V , we have α ∈ U if and only if
VecS (α)A is zero. Such a matrix A is called a parity check matrix for U .

EXERCISE 14.4. Let F be a finite field, and let A be a non-zero m× n matrix over
F . Suppose one chooses a vector v ∈ F 1×m at random. Show that the probability
that vA is the zero vector is at most 1/|F |.
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EXERCISE 14.5. Design and analyze a probabilistic algorithm that takes as input
matrices A,B,C ∈ Zm×mp , where p is a prime. The algorithm should run in time
O(m2 len(p)2) and should output either “yes” or “no” so that the following holds:

• if C = AB, then the algorithm should always output “yes”;
• if C 6= AB, then the algorithm should output “no” with probability at least

0.999.

14.3 The inverse of a matrix
Let R be a ring.

For a square matrix A ∈ Rn×n, we call a matrix B ∈ Rn×n an inverse of A if
BA = AB = I , where I is the n × n identity matrix. It is easy to see that if A has
an inverse, then the inverse is unique: if B and C are inverses of A, then

B = BI = B(AC) = (BA)C = IC = C.

Because the inverse of A is uniquely determined, we denote it by A−1. If A has an
inverse, we say that A is invertible, or non-singular. If A is not invertible, it is
sometimes called singular. We will use the terms “invertible” and “not invertible.”
Observe that A is the inverse of A−1; that is, (A−1)−1 = A.

If A and B are invertible n × n matrices, then so is their product: in fact, it is
easily verified that (AB)−1 = B−1A−1. It follows that if A is an invertible matrix,
and k is a non-negative integer, then Ak is invertible with inverse (A−1)k, which
we also denote by A−k.

It is also easy to see that A is invertible if and only if the transposed matrix A
is invertible, in which case (A )−1 = (A−1) . Indeed, AB = I = BA holds if and
only if B A = I = A B .

We now develop a connection between invertible matrices and R-module iso-
morphisms. Recall from the previous section the R-module isomorphism

Λ : Rn×n → HomR(R1×n,R1×n)

A 7→ λA,

where for each A ∈ Rn×n, λA is the corresponding R-linear map

λA : R1×n → R1×n

v 7→ vA.

Evidently, λI is the identity map.

Theorem 14.5. Let A ∈ Rn×n, and let λA : R1×n → R1×n be the corresponding
R-linear map. Then A is invertible if and only if λA is bijective, in which case
λA−1 = λ−1

A .
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Proof. Suppose A is invertible, and that B is its inverse. We have AB = BA = I ,
and hence λAB = λBA = λI , from which it follows (see (14.1)) that λB ◦ λA =
λA ◦ λB = λI . Since λI is the identity map, this implies λA is bijective.

Suppose λA is bijective. We know that the inverse map λ−1
A is also an R-linear

map, and since the mapping Λ above is surjective, we have λ−1
A = λB for some

B ∈ Rn×n. Therefore, we have λB ◦ λA = λA ◦ λB = λI , and hence (again,
see (14.1)) λAB = λBA = λI . Since the mapping Λ is injective, it follows that
AB = BA = I . This implies A is invertible, with A−1 = B. 2

We also have:

Theorem 14.6. Let A ∈ Rn×n. The following are equivalent:

(i) A is invertible;

(ii) {Rowi(A)}ni=1 is a basis for R1×n;

(iii) {Colj(A)}nj=1 is a basis for Rn×1.

Proof. We first prove the equivalence of (i) and (ii). By the previous theorem,
A is invertible if and only if λA is bijective. Also, in the previous section, we
observed that λA is surjective if and only if {Rowi(A)}ni=1 spans R1×n, and that λA
is injective if and only if {Rowi(A)}ni=1 is linearly independent.

The equivalence of (i) and (iii) follows by considering the transpose of A. 2

EXERCISE 14.6. Let R be a ring, and let A be a square matrix over R. Let us call
B a left inverse of A if BA = I , and let us call C a right inverse of A if AC = I .

(a) Show that if A has both a left inverse B and a right inverse C, then B = C

and hence A is invertible.

(b) Assume that R is a field. Show that if A has either a left inverse or a right
inverse, then A is invertible.

Note that part (b) of the previous exercise holds for arbitrary rings, but the proof
of this is non-trivial, and requires the development of the theory of determinants,
which we do not cover in this text.

EXERCISE 14.7. Show that if A and B are two square matrices over a field such
that their product AB is invertible, then both A and B themselves must be invert-
ible.

EXERCISE 14.8. Show that if A is a square matrix over an arbitrary ring, and Ak

is invertible for some k > 0, then A is invertible.

EXERCISE 14.9. With notation as in Example 14.1, show that the matrix A is
invertible if and only if c0 ∈ R∗.
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EXERCISE 14.10. With notation as in Example 14.2, show that the matrix A is
invertible if and only if xi − xj ∈ R∗ for all i 6= j.

14.4 Gaussian elimination
Throughout this section, F denotes a field.

A matrix B ∈ Fm×n is said to be in reduced row echelon form if there exists a
sequence of integers (p1, . . . , pr), with 0 ≤ r ≤ m and 1 ≤ p1 < p2 < · · · < pr ≤ n,
such that the following holds:

• for i = 1, . . . , r, all of the entries in row i of B to the left of entry (i, pi) are
zero; that is, B(i, j) = 0F for j = 1, . . . , pi − 1;

• for i = 1, . . . , r, all of the entries in column pi of B above entry (i, pi) are
zero; that is, B(i′, pi) = 0F for i′ = 1, . . . , i − 1;

• for i = 1, . . . , r, we have B(i, pi) = 1F ;

• all entries in rows r + 1, . . . ,m of B are zero; that is, B(i, j) = 0F for
i = r + 1, . . . ,m and j = 1, . . . , n.

It is easy to see that if B is in reduced row echelon form, then the sequence
(p1, . . . , pr) above is uniquely determined, and we call it the pivot sequence of B.
Several further remarks are in order:

• All of the entries of B are completely determined by the pivot sequence,
except for the entries (i, j) with 1 ≤ i ≤ r and j > pi with j /∈ {pi+1, . . . , pr},
which may be arbitrary.

• If B is an n × n matrix in reduced row echelon form whose pivot sequence
is of length n, then B must be the n × n identity matrix.

• We allow for an empty pivot sequence (i.e., r = 0), which will be the case
precisely when B = 0m×nF .

Example 14.3. The following 4×6 matrixB over the rational numbers is in reduced
row echelon form:

B =









0 1 −2 0 0 3
0 0 0 1 0 2
0 0 0 0 1 −4
0 0 0 0 0 0









.

The pivot sequence of B is (2, 4, 5). Notice that the first three rows of B form a
linearly independent family of vectors, that columns 2, 4, and 5 form a linearly
independent family of vectors, and that all of other columns of B are linear com-
binations of columns 2, 4, and 5. Indeed, if we truncate the pivot columns to their
first three rows, we get the 3 × 3 identity matrix. 2
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Generalizing the previous example, if a matrix is in reduced row echelon form,
it is easy to deduce the following properties, which turn out to be quite useful:

Theorem 14.7. If B is a matrix in reduced row echelon form with pivot sequence
(p1, . . . , pr), then:

(i) rows 1, 2, . . . , r of B form a linearly independent family of vectors;

(ii) columns p1, . . . , pr of B form a linearly independent family of vectors, and
all other columns of B can be expressed as linear combinations of columns
p1, . . . , pr.

Proof. Exercise—just look at the matrix! 2

Gaussian elimination is an algorithm that transforms a given matrix A ∈ Fm×n
into a matrix B ∈ Fm×n, where B is in reduced row echelon form, and is obtained
from A by a sequence of elementary row operations. There are three types of
elementary row operations:

Type I: swap two rows;

Type II: multiply a row by a non-zero scalar;

Type III: add a scalar multiple of one row to a different row.

The application of any specific elementary row operation to an m × n matrix
C can be affected by multiplying C on the left by a suitable m × m matrix X.
Indeed, the matrix X corresponding to a particular elementary row operation is
simply the matrix obtained by applying the same elementary row operation to the
m×m identity matrix. It is easy to see that for every elementary row operation, the
corresponding matrix X is invertible.

We now describe the basic version of Gaussian elimination. The input is anm×n
matrix A, and the algorithm is described in Fig. 14.1.

The algorithm works as follows. First, it makes a copy B of A (this is not neces-
sary if the original matrixA is not needed afterwards). The algorithm proceeds col-
umn by column, starting with the left-most column, so that after processing column
j, the first j columns of B are in reduced row echelon form, and the current value
of r represents the length of the pivot sequence. To process column j, in steps 3–6
the algorithm first searches for a non-zero element among B(r+ 1, j), . . . ,B(m, j);
if none is found, then the first j + 1 columns of B are already in reduced row
echelon form. Otherwise, one of these non-zero elements is selected as the pivot
element (the choice is arbitrary), which is then used in steps 8–13 to bring column
j into the required form. After incrementing r, the pivot element is brought into
position (r, j), using a Type I operation in step 9. Then the entry (r, j) is set to 1F ,
using a Type II operation in step 10. Finally, all the entries above and below entry
(r, j) are set to 0F , using Type III operations in steps 11–13. Note that because
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1. B ← A, r ← 0
2. for j ← 1 to n do
3. ` ← 0, i← r

4. while ` = 0 and i ≤ m do
5. i← i + 1
6. if B(i, j) 6= 0F then ` ← i

7. if ` 6= 0 then
8. r ← r + 1
9. swap rows r and ` of B

10. Rowr(B) ← B(r, j)−1 Rowr(B)
11. for i← 1 to m do
12. if i 6= r then
13. Rowi(B) ← Rowi(B) − B(i, j) Rowr(B)
14. output B

Fig. 14.1. Gaussian elimination

columns 1, . . . , j−1 of B were already in reduced row echelon form, none of these
operations changes any values in these columns.

As for the complexity of the algorithm, it is easy to see that it performs O(mn)
elementary row operations, each of which takes O(n) operations in F , so a total of
O(mn2) operations in F .

Example 14.4. Consider the execution of the Gaussian elimination algorithm on
input

A =





[0] [1] [1]
[2] [1] [2]
[2] [2] [0]



 ∈ Z3×3
3 .

After copying A into B, the algorithm transforms B as follows:




[0] [1] [1]
[2] [1] [2]
[2] [2] [0]





Row1↔Row2−−−−−−−−−→





[2] [1] [2]
[0] [1] [1]
[2] [2] [0]





Row1←[2] Row1−−−−−−−−−−−→





[1] [2] [1]
[0] [1] [1]
[2] [2] [0]





Row3←Row3 −[2] Row1−−−−−−−−−−−−−−−−→





[1] [2] [1]
[0] [1] [1]
[0] [1] [1]





Row1←Row1 −[2] Row2−−−−−−−−−−−−−−−−→





[1] [0] [2]
[0] [1] [1]
[0] [1] [1]




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Row3←Row3 −Row2−−−−−−−−−−−−−−→





[1] [0] [2]
[0] [1] [1]
[0] [0] [0]



 . 2

Suppose the Gaussian elimination algorithm performs a total of t elementary
row operations. Then as discussed above, the application of the eth elementary
row operation, for e = 1, . . . , t, amounts to multiplying the current value of the
matrix B on the left by a particular invertible m×m matrix Xe. Therefore, the final
output value of B satisfies the equation

B = XA where X = XtXt−1 · · ·X1.

Since the product of invertible matrices is also invertible, we see that X itself is
invertible.

Although the algorithm as presented does not compute the matrix X, it can
be easily modified to do so. The resulting algorithm, which we call extended
Gaussian elimination, is the same as plain Gaussian elimination, except that we
initialize the matrix X to be the m × m identity matrix, and we add the following
steps:

• just before step 9: swap rows r and ` of X;

• just before step 10: Rowr(X) ← B(r, j)−1 Rowr(X);

• just before step 13: Rowi(X) ← Rowi(X) − B(i, j) Rowr(X).

At the end of the algorithm we output X in addition to B.
So we simply perform the same elementary row operations onX that we perform

on B. The reader may verify that the above algorithm is correct, and that it uses
O(mn(m + n)) operations in F .

Example 14.5. Continuing with Example 14.4, the execution of the extended
Gaussian elimination algorithm initializes X to the identity matrix, and then trans-
forms X as follows:




[1] [0] [0]
[0] [1] [0]
[0] [0] [1]





Row1↔Row2−−−−−−−−−→





[0] [1] [0]
[1] [0] [0]
[0] [0] [1]





Row1←[2] Row1−−−−−−−−−−−→





[0] [2] [0]
[1] [0] [0]
[0] [0] [1]





Row3←Row3 −[2] Row1−−−−−−−−−−−−−−−−→





[0] [2] [0]
[1] [0] [0]
[0] [2] [1]





Row1←Row1 −[2] Row2−−−−−−−−−−−−−−−−→





[1] [2] [0]
[1] [0] [0]
[0] [2] [1]




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Row3←Row3 −Row2−−−−−−−−−−−−−−→





[1] [2] [0]
[1] [0] [0]
[2] [2] [1]



 . 2

EXERCISE 14.11. For each type of elementary row operation, describe the matrix
X which corresponds to it, as well as X−1.

EXERCISE 14.12. Given a matrix B ∈ Fm×n in reduced row echelon form, show
how to compute its pivot sequence using O(n) operations in F .

EXERCISE 14.13. In §4.4, we saw how to speed up matrix multiplication over Z
using the Chinese remainder theorem. In this exercise, you are to do the same, but
for performing Gaussian elimination over Zp, where p is a large prime. Suppose
you are given an m × m matrix A over Zp, where len(p) = Θ(m). Straightforward
application of Gaussian elimination would require O(m3) operations in Zp, each of
which takes time O(m2), leading to a total running time of O(m5). Show how to
use the techniques of §4.4 to reduce the running time of Gaussian elimination to
O(m4).

14.5 Applications of Gaussian elimination
Throughout this section, A is an arbitrarym×nmatrix over a field F , andXA = B,
where X is an invertible m × m matrix, and B is an m × n matrix in reduced row
echelon form with pivot sequence (p1, . . . , pr). This is precisely the information
produced by the extended Gaussian elimination algorithm, given A as input (the
pivot sequence can easily be “read” directly from B—see Exercise 14.12). Also,
let

λA : F 1×m → F 1×n

v 7→ vA

be the linear map corresponding to A.

Computing the image and kernel
Consider first the row space ofA, by which we mean the subspace of F 1×n spanned
by {Rowi(A)}mi=1, or equivalently, the image of λA.

We claim that the row space of A is the same as the row space of B. To see this,
note that since B = XA, for every v ∈ F 1×m, we have vB = v(XA) = (vX)A, and
so the row space ofB is contained in the row space ofA. For the other containment,
note that since X is invertible, we can write A = X−1B, and apply the same
argument.
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Further, note that the row space of B, and hence that of A, clearly has dimension
r. Indeed, as stated in Theorem 14.7, rows 1, . . . , r of B form a basis for the row
space of B.

Consider next the kernel K of λA, or what we might call the row null space
of A. We claim that {Rowi(X)}mi=r+1 is a basis for K. Clearly, just from the
fact that XA = B and the fact that rows r + 1, . . . ,m of B are zero, it follows
that rows r + 1, . . . ,m of X are contained in K. Furthermore, as X is invertible,
{Rowi(X)}mi=1 is a basis for F 1×m (see Theorem 14.6). Thus, the family of vectors
{Rowi(X)}mi=r+1 is linearly independent and spans a subspace K ′ of K. It suffices
to show that K ′ = K. Suppose to the contrary that K ′ ( K, and let v ∈ K \ K ′.
As {Rowi(X)}mi=1 spans F 1×m, we may write v =

∑m
i=1 ci Rowi(X); moreover, as

v /∈ K ′, we must have ci 6= 0F for some i = 1, . . . , r. Setting ṽ := (c1, . . . , cm), we
see that v = ṽX, and so

λA(v) = vA = (ṽX)A = ṽ(XA) = ṽB.

Furthermore, since {Rowi(B)}ri=1 is linearly independent, rows r + 1, . . . ,m of B
are zero, and ṽ has a non-zero entry in one of its first r positions, we see that ṽB is
not the zero vector. We have derived a contradiction, and hence may conclude that
K ′ = K.

Finally, note that if m = n, then A is invertible if and only if its row space has
dimension m, which holds if and only if r = m, and in the latter case, B is the
identity matrix, and hence X is the inverse of A.

Let us summarize the above discussion:
• The first r rows of B form a basis for the row space of A (i.e., the image of
λA).

• The last m − r rows of X form a basis for the row null space of A (i.e., the
kernel of λA).

• If m = n, then A is invertible (i.e., λA is an isomorphism) if and only if
r = m, in which case X is the inverse of A (i.e., the matrix of λ−1

A relative
to the standard basis).

So we see that from the output of the extended Gaussian elimination algorithm,
we can simply “read off” bases for both the image and the kernel, as well as the
inverse (if it exists), of a linear map represented as a matrix with respect to given
bases. Also note that this procedure provides a “constructive” version of Theo-
rem 13.28.

Example 14.6. Continuing with Examples 14.4 and 14.5, we see that the vectors
([1], [0], [2]) and ([0], [1], [1]) form a basis for the row space of A, while the vector
([2], [2], [1]) is a basis for the row null space of A. 2
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Solving systems of linear equations
Suppose that in addition to the matrix A, we are given w ∈ F 1×n, and want to find
a solution v ∈ F 1×m (or perhaps describe all solutions), to the equation

vA = w. (14.3)

Equivalently, we can phrase the problem as finding an element (or describing all
elements) of the set λ−1

A ({w}).
Now, if there exists a solution at all, say v ∈ F 1×m, then λA(v) = λA(v′) if and

only if v ≡ v′ (mod K), where K is the kernel of λA. It follows that the set of all
solutions to (14.3) is v + K = {v + v0 : v0 ∈ K}. Thus, given a basis for K and
any solution v to (14.3), we have a complete and concise description of the set of
solutions to (14.3).

As we have discussed above, the last m − r rows of X form a basis for K, so it
suffices to determine if w ∈ Im λA, and if so, determine a single pre-image v of w.

Also as we discussed, Im λA, that is, the row space ofA, is equal to the row space
of B, and because of the special form of B, we can quickly and easily determine if
the given w is in the row space of B, as follows. By definition, w is in the row space
ofB if and only if there exists a vector v ∈ F 1×m such that vB = w. We may as well
assume that all but the first r entries of v are zero. Moreover, vB = w implies that
for i = 1, . . . , r, the ith entry of v is equal to the pith entry of w. Thus, the vector v,
if it exists, is completely determined by the entries of w at positions p1, . . . , pr. We
can construct v satisfying these conditions, and then test if vB = w. If not, then we
may conclude that (14.3) has no solutions; otherwise, setting v := vX, we see that
vA = (vX)A = v(XA) = vB = w, and so v is a solution to (14.3).

One easily verifies that if we implement the above procedure as an algorithm,
the work done in addition to running the extended Gaussian elimination algorithm
amounts to O(m(n + m)) operations in F .

A special case of the above procedure is when m = n and A is invertible, in
which case (14.3) has a unique solution, namely, v := wX, since in this case,
X = A−1.

The rank of a matrix
We define the row rank ofA to be the dimension of its row space, which is equal to
dimF (Im λA). The column space of A is defined as the subspace of Fm×1 spanned
by {Colj(A)}nj=1; that is, the column space of A is {Az : z ∈ F n×1}. The column
rank of A is the dimension of its column space.

Now, the column space of A need not be the same as the column space of B, but
from the identity B = XA, and the fact that X is invertible, it easily follows that
these two subspaces are isomorphic (via the map that sends y ∈ Fm×1 to Xy), and
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hence have the same dimension. Moreover, by Theorem 14.7, the column rank of
B is r, which is the same as the row rank of A.

So we may conclude: The column rank and row rank of A are the same.
Because of this, we may define the rank of a matrix to be the common value of

its row and column rank.

The orthogonal complement of a subspace
So as to give equal treatment to rows and columns, one can also define the column
null space of A to be the kernel of the linear map defined by multiplication on the
left by A; that is, the column null space of A is {z ∈ F n×1 : Az = 0m×1

F }. By
applying the results above to the transpose of A, we see that the column null space
of A has dimension n − r, where r is the rank of A.

Let U ⊆ F 1×n be the row space of A, and let U⊥ ⊆ F 1×n denote the set of
all vectors u ∈ F 1×n whose transpose u belongs to the column null space of A.
Now, U is a subspace of F 1×n of dimension r and U⊥ is a subspace of F 1×n of
dimension n − r. The space U⊥ consists precisely of all vectors u ∈ F 1×n that are
“orthogonal” to all vectors u ∈ U , in the sense that the “inner product” uu is zero.
For this reason, U⊥ is sometimes called the “orthogonal complement of U .”

Clearly, U⊥ is determined by the subspace U itself, and does not depend on the
particular choice of matrix A. It is also easy to see that the orthogonal complement
of U⊥ is U ; that is, (U⊥)⊥ = U . This follows immediately from the fact that
U ⊆ (U⊥)⊥ and dimF ((U⊥)⊥) = n − dimF (U⊥) = dimF (U ).

Now suppose that U ∩ U⊥ = {0}. Then by Theorem 13.11, we have an isomor-
phism of U ×U⊥ with U +U⊥, and since U ×U⊥ has dimension n, it must be the
case that U + U⊥ = F 1×n. It follows that every element of F 1×n can be expressed
uniquely as u + u, where u ∈ U and u ∈ U⊥.

We emphasize that the observations in the previous paragraph hinged on the
assumption that U ∩ U⊥ = {0}, which itself holds provided U contains no non-
zero “self-orthogonal vectors” u such that uu is zero. If F is the field of real
numbers, then of course there are no non-zero self-orthogonal vectors, since uu
is the sum of the squares of the entries of u. However, for other fields, there may
very well be non-zero self-orthogonal vectors. As an example, if F = Z2, then any
vector u with an even number of 1-entries is self orthogonal.

So we see that while much of the theory of vector spaces and matrices carries
over without change from familiar ground fields, like the real numbers, to arbitrary
ground fields F , not everything does. In particular, the usual decomposition of a
vector space into a subspace and its orthogonal complement breaks down, as does
any other procedure that relies on properties specific to “inner product spaces.”
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For the following three exercises, as above, A is an arbitrary m× n matrix over a
field F , and XA = B, where X is an invertible m × m matrix, and B is in reduced
row echelon form.

EXERCISE 14.14. Show that the column null space of A is the same as the column
null space of B.

EXERCISE 14.15. Show how to compute a basis for the column null space of A
using O(r(n − r)) operations in F , given A and B.

EXERCISE 14.16. Show that the matrix B is uniquely determined by A; more
precisely, show that if X′A = B′, where X′ is an invertible m×m matrix, and B′ is
in reduced row echelon form, then B′ = B.

In the following two exercises, the theory of determinants could be used; how-
ever, they can all be solved directly, without too much difficulty, using just the ideas
developed so far in the text.

EXERCISE 14.17. Let p be a prime. A matrix A ∈ Zm×m is called invertible mod-
ulo p if there exists a matrix B ∈ Zm×m such that AB ≡ BA ≡ I (mod p), where I
is the m × m integer identity matrix. Here, two matrices are considered congruent
with respect to a given modulus if their corresponding entries are congruent. Show
that A is invertible modulo p if and only if A is invertible over Q, and the entries
of A−1 lie in Q(p) (see Example 7.26).

EXERCISE 14.18. You are given a matrix A ∈ Zm×m and a prime p such that A
is invertible modulo p (see previous exercise). Suppose that you are also given
w ∈ Z1×m.

(a) Show how to efficiently compute a vector v ∈ Z1×m such that vA ≡
w (mod p), and that v is uniquely determined modulo p.

(b) Given a vector v as in part (a), along with an integer e ≥ 1, show how
to efficiently compute v̂ ∈ Z1×m such that v̂A ≡ w (mod pe), and that v̂
is uniquely determined modulo pe. Hint: mimic the “lifting” procedure
discussed in §12.5.2.

(c) Using parts (a) and (b), design and analyze an efficient algorithm that takes
the matrix A and the prime p as input, together with a bound H on the
absolute value of the numerator and denominator of the entries of the vector
v′ that is the unique (rational) solution to the equation v′A = w. Your
algorithm should run in time polynomial in the length of H , the length of
p, and the sum of the lengths of the entries of A and w. Hint: use rational
reconstruction, but be sure to fully justify its application.
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Note that in the previous exercise, one can use the theory of determinants to
derive good bounds, in terms of the lengths of the entries of A and w, on the size of
the least prime p such that A is invertible modulo p (assuming A is invertible over
the rationals), and on the length of the numerator and denominator of the entries of
rational solution v′ to the equation v′A = w. The interested reader who is familiar
with the basic theory of determinants is encouraged to establish such bounds.

The next two exercises illustrate how Gaussian elimination can be adapted, in
certain cases, to work in rings that are not necessarily fields. Let R be an arbitrary
ring. A matrix B ∈ Rm×n is said to be in row echelon form if there exists a pivot
sequence (p1, . . . , pr), with 0 ≤ r ≤ m and 1 ≤ p1 < p2 < · · · < pr ≤ n, such that
the following holds:

• for i = 1, . . . , r, all of the entries in row i of B to the left of entry (i, pi) are
zero;

• for i = 1, . . . , r, we have B(i, pi) 6= 0R;

• all entries in rows r + 1, . . . ,m of B are zero.

EXERCISE 14.19. Let R be the ring Zpe , where p is prime and e > 1. Let
π := [p] ∈ R. The goal of this exercise is to develop an efficient algorithm for the
following problem: given a matrix A ∈ Rm×n, with m > n, find a vector v ∈ R1×m

such that vA = 01×n
R but v /∈ πR1×m.

(a) Show how to modify the extended Gaussian elimination algorithm to solve
the following problem: given a matrix A ∈ Rm×n, compute X ∈ Rm×m and
B ∈ Rm×n, such that XA = B, X is invertible, and B is in row echelon
form. Your algorithm should run in time O(mn(m + n)e2 len(p)2). Assume
that the input includes the values p and e. Hint: when choosing a pivot ele-
ment, select one divisible by a minimal power of π; as in ordinary Gaussian
elimination, your algorithm should only use elementary row operations to
transform the input matrix.

(b) Using the fact that the matrix X computed in part (a) is invertible, argue
that none of its rows belong to πR1×m.

(c) Argue that if m > n and the matrix B computed in part (a) has pivot
sequence (p1, . . . , pr), then m − r > 0 and if v is any one of the last m − r
rows of X, then vA = 01×n

R .

(d) Give an example that shows that {Rowi(B)}ri=1 need not be linearly inde-
pendent, and that {Rowi(X)}mi=r+1 need not span the kernel of the linear
map λA corresponding to A.

EXERCISE 14.20. Let R be the ring Z`, where ` > 1 is an integer. You are given
a matrix A ∈ Rm×n. Show how to efficiently compute X ∈ Rm×m and B ∈ Rm×n
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such that XA = B, X is invertible, and B is in row echelon form. Your algorithm
should run in time O(mn(m+ n) len(`)2). Hint: to zero-out entries, you should use
“rotations”—for integers a, b, d, s, t with

d = gcd(a, b) 6= 0 and as + bt = d,

and for row indices r, i, a rotation simultaneously updates rows r and i of a matrix
C as follows:

(Rowr(C), Rowi(C)) ← (sRowr(C) + tRowi(C),−
b

d
Rowr(C) +

a

d
Rowi(C));

observe that if C(r, j) = [a]` and C(i, j) = [b]` before applying the rotation, then
C(r, j) = [d]` and C(i, j) = [0]` after the rotation.

EXERCISE 14.21. Consider again the setting in Exercise 14.3. Show that A ∈
Fm×(m−`) is a parity check matrix for U if and only if {Colj(A) }m−`i=1 is a basis for
the orthogonal complement of VecS (U ) ⊆ F 1×m.

EXERCISE 14.22. Let {vi}ni=1 be a family of vectors, where vi ∈ R1×` for each
i = 1, . . . , n. We say that {vi}ni=1 is pairwise orthogonal if vivj = 0 for all i 6= j.
Show that every pairwise orthogonal family of non-zero vectors over R is linearly
independent.

EXERCISE 14.23. The purpose of this exercise is to use linear algebra to prove that
any pairwise independent family of hash functions (see §8.7) must contain a large
number of hash functions. More precisely, let {Φr}r∈R be a pairwise independent
family of hash functions from S to T , with |T | ≥ 2. Our goal is to show that
|R| ≥ |S|. Let n := |S|, and m := |T |, and ` := |R|. Write R = {r1, . . . , r`} and
S = {s1, . . . , sn}. Without loss of generality, we may assume that T is a set of
non-zero real numbers that sum to zero (e.g., T = {1, . . . ,m − 1,−m(m − 1)/2}).
Now define the matrix A ∈ Rn×` with A(i, j) := Φrj (si). Show that {Rowi(A)}ni=1
is a pairwise orthogonal family of non-zero vectors (see previous exercise). From
this, deduce that ` ≥ n.

14.6 Notes
While a trivial application of the defining formulas yields a simple algorithm for
multiplying two n × n matrices over a ring R that uses O(n3) operations in R, this
algorithm is not the best, asymptotically speaking. The currently fastest algorithm
for this problem, due to Coppersmith and Winograd [28], uses O(nω) operations in
R, where ω < 2.376. We note, however, that the good old O(n3) algorithm is still
the only one used in almost any practical setting.


